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3.3 The André-Oort conjecture. . . . . . . . . . . . . . . . . . . . 21

3.3.1 Equidistribution of ”Toric orbits” of CM points . . . . 26

4 Equidistribution of special subvarieties. 27
4.1 The case of abelian varieties. . . . . . . . . . . . . . . . . . . . 27

4.1.1 The flat case . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Equidistribution of algebraic measures . . . . . . . . . . . . . 30

4.2.1 Ergodic theory and property E . . . . . . . . . . . . . 32
4.2.2 Adelic equidistribution for PGL(2, F ). . . . . . . . . . 33

1



4.3 Equidistribution of special subvarieties of Shimura varieties . . 35

1 Introduction

These notes were prepared for the 2005 Summer School ”Equidistribution in
Number theory” organized by Andrew Granville and Zeev Rudnick in Mon-
treal. It’s a pleasure to thank them for the opportunity of giving these lec-
tures. The aim of this text is to describe the conjectures of Manin-Mumford,
Bogomolov and André-Oort from the point of view of equidistribution. This
includes a discussion of equidistribution of points with small heights of CM
points and of Hecke points. We tried also to explain some questions of
equidistribution of positive dimensional ”special” subvarieties of a given va-
riety.

The assignment by the organizer was to try to present a large overview
but to avoid using technical language. For example I was not allowed to use
the following notions (I quote the organizers):

1. Adeles (avoid them like the plague!)

2. Shimura varieties

3. Semisimple groups

4. Arakelov theory

I was unable to fill out all the requirements but I tried to focus on sig-
nificant examples and the presentation of the general picture in a coherent
view. Complete proofs are given in only a small amount of simplified cases
when it can help the reader improve his intuition on the general case. The
main statements are only sketched and the material of these notes covers
much more than it’s possible to present in a few hours of lectures. We hope
that this text will complement the lectures and will be of some help for the
reader interested in the understanding of these topics in a deeper way.
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2 Informal examples of equidistribution.

2.1 Preliminary results from measure theory

Let X be a metric space and P(X) the set of Borel probability measures on
X. Let C(X) be the set of bounded continuous functions on X. We say that
a sequence µn ∈ P(X) is weakly convergent to µ ∈ P(X) if for all f ∈ C(X)

µn(f) =

∫
X

f dµn −→ µ(f) =

∫
X

f dµ as n→∞.

We’ll write µn → µ in this case.
We define the weak∗ topology on P(X) as the smallest topology making

each of the maps µ→ µ(f) =
∫
f dµ (f ∈ C(X)) continuous.

Proposition 2.1 Suppose that X is a compact metric space. Then µn weakly
converges to µ if and only if µn converges to µ in the weak∗ topology. The
space P(X) is metrisable and compact for the weak∗ topology: If µn ∈ P(X)
is a sequence then there exists a weakly convergent subsequence.

A useful way of proving some equidistribution properties is given by
Weyl’s criterion:

Proposition 2.2 Let X be a compact metric space. Let φn ∈ C(X) be a
sequence with the property that their linear combinations are dense in C(X)
(endowed with the usual norm ‖f‖ = supx∈X |f(x)|). Then µn → µ if and
only if for all m ∈ N, µn(φm) → µ(φm).

If E is a finite subset of X we define µE ∈ P(X) as

µE =
1

|E|
∑
x∈E

δx (1)

where δx denotes the Dirac measure supported at x. We say that a se-
quence En of finite subsets of X is equidistributed for µ ∈ P(X) (or µ-
equidistributed) if µEn → µ.

When X is not compact it’s sometimes possible to adapt Weyl’s criterion.
For modular curves or more generally Shimura varieties, L2-techniques (spec-
tral decomposition) are used to prove the equidistribution of Hecke points or
CM points.
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Example 2.3 Let X = C∗ and En be the set of n-th roots of unity. Then En

is equidistributed for the normalized measure dα
2π

supported on the unit circle.

Exercise 2.4 Prove the last assertion using proposition 2.2. Let n be a
integer, ζn a primitive n-roots of unity. Let E ′n be the set of Galois conjugate
of ζn. Using the irreducibility of the cyclotomic polynomials prove that the
sequence E ′p (with p a prime number) is dα

2π
-equidistributed. Prove the same

result for E ′n.

2.2 Equidistribution of Galois orbits of algebraic points

Let X be an algebraic projective variety defined over a number field K. For
all field L containing K we denote by X(L) the set of L rational points of
X. Let Q be the algebraic closure of Q and GK the Galois group of Q over
K. For all x ∈ X(Q) we define

Ex = {xσ | σ ∈ GK} (2)

the Galois-orbit of x.
If we fix an embedding σ of K in C, we can realize Ex as a subset of

Xσ(C). We write ∆x = µEx the associated measure given by (1). A general
(unsolved) problem is the following: let xn be a sequence of points of X(Q),
what can be said about the weak limits of the associated sequence ∆n = ∆xn

of P(X).
We are not expecting a general answer to this question but we are going

to give significant examples for which it’s possible to say something. In all
these examples there will be an underlying group structure on the variety X.
To avoid some useless pathologies we make the following definition.

Definition 2.5 Let X be an algebraic variety. A sequence xn of points of X
is said to be ”generic” if for all proper algebraic subvariety Y ⊂ X the set
{n ∈ N |xn ∈ Y } is finite.

(Exercise for topologist, prove that a sequence xn is generic if an only if
xn converges to the generic point of X in the Zariski topology).
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2.2.1 The case of Gm: a theorem of Bilu.

The first results (related to the exercise 2.4) is obtained by Bilu. Let Gm

denote the multiplicative group, so Gm is an algebraic variety defined over Q
and for all field K containing Q the set Gm(K) of K-rational points of Gm

is K∗. There is a canonical height function

ĥ : Gm(Q) −→ R+ (3)

satisfying the following conditions:

1. For all α ∈ Gm(Q) and all n ∈ N, ĥ(αn) = nĥ(α).

2. (Northcott) For all n ∈ N and all X ∈ R+ the set

{α ∈ Gm(Q) | [Q(α) : Q] ≤ n and ĥ(α) ≤ X}

is finite.

A first consequence of these properties is that ĥ(α) = 0 if and only if α is

a root of unity. In fact ĥ(1) = ĥ(12) = 2ĥ(1) = 0. If α is a root of unity then

there exists a n ∈ N such that αn = 1. Hence ĥ(αn) = nĥ(α) = ĥ(1) = 0.

If ĥ(α) = 0 then for all n ∈ N, ĥ(αn) = 0. Applying Northcott we find that
{αn, n ∈ N} is a finite set; therefore α is a root of unity.

Another consequence of the Northcott’s theorem is that if αn ∈ Gm(Q)

is a generic sequence of points such that ĥ(αn) → 0 then |Eαn| → ∞.

Theorem 2.6 (Bilu[4]) Let αn ∈ Gm(Q) be a generic sequence of points

such that ĥ(αn) → 0 then the sets Eαn are dα
2π

-equidistributed.

Proof. See [4] for this statement and the generalization to the higher rank
torus Gr

m.

2.2.2 The case of elliptic curves and abelian varieties.

Let X be an elliptic curve over a field K, so X is an algebraic curve of genus
1 defined over K with the structure of an abelian group on X(K) (we denote
by O the neutral element of X(K)). If K = C then X is isomorphic to
Γ\C for a lattice Γ ⊂ C. The Lebesgue measure on C induces a canonical
probability measure µX ∈ P(X). From this description we see that the set
X[n] = {P ∈ E(C) |[n]P = O]} is isomorphic to Γ\ 1

n
Γ ' Z/nZ⊕ Z/nZ.
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Exercise 2.7 Prove that the sequences of subsets X[n] of X is µX-equidistributed.
(Use proposition 2.2). Let X ′[n] be the subset of X[n] consisting of points
of order n (for example if p is prime X ′[p] = X[p] − {O}). Prove that the
sequence of subsets X ′[n] are µ-equidistributed.

Let XK be an elliptic curve defined over a field K of characteristic 0. The
group End(XK) of K-endomorphism of XK is Z or an order in an imaginary
quadratic field. We say thatXK has complex multiplication if End(XK) 6= Z.

Let XK be a K-elliptic curve without complex multiplication. A conse-
quence of Serre’s open image theorem is that for all p big enough the Galois
orbit of a point Qp of order p is X ′[p]. With the notation of the section we
have EQp = E ′[p] and therefore the sets EQp are µX-equidistributed. Using
the full strength of Serre’s open image theorem it’s possible but not obvious
to prove that if Qn is a sequence of points of X(Q) with Qn of order n then
the sets EQn are µX-equidistributed. If XK has complex multiplication you
may have infinitely many prime numbers p such that there exist a point Qp

of X(Q) of order p with EQp of cardinality p − 1 (corresponding to a cyclic
isogenies of order p).

Using Arakelov theory it is possible to prove a very general result for
the equidistribution of Galois-orbits of points with small heights on abelian
varieties (containing the equidistribution of the sets EQn even for an elliptic
curve with complex multiplication.)

An abelian variety A of dimension g over C is a complex torus A ' Γ\Cg

endowed with the structure of a projective algebraic variety. The Lebesgue
measure on Cn induces a canonical probability measure µ = µA on A. We
deduce from this description that A(C) is an abelian group. A point P of A
is said to be a torsion point if there exists n ∈ N such that [n]P = O. The
set

A[n] = {P ∈ A(C)|[n]P = 0}

is isomorphic to Z/nZ2g as an abelian group.
More generally an abelian AK variety over a field K is a projective al-

gebraic variety endowed with the structure of an abelian group structure.
Concretely for all extension L of K A(L) is an abelian group. If K is a
number field A(K) is finitely generated (Mordell-Weil Theorem).

As in the case Gm, if AK is defined over a number field K it’s possible to
define a canonical height function

ĥ : A(Q) −→ R+
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(the Néron-Tate height) with the properties

1. For all α ∈ A(Q) and all n ∈ N, ĥ([n]α) = n2ĥ(α).

2. (Northcott) For all n ∈ N and all X ∈ R+ the set

{α ∈ A(Q) | [Q(α) : Q] ≤ n and ĥ(α) ≤ X}

is finite.

Remark 2.8 The height function depends on the choice of a symmetric
ample divisor. By definition of a projective variety we can find an ample line
bundle L on A (sometime we say that L is a polarization). A line bundle M
on A is said to be symmetric if [−1]∗M ' M. One can show that if L is
ample then [−1]∗L ⊗ L is ample symmetric.

Exercise 2.9 Let AK be an abelian variety defined over a number field K.
Prove that a point P ∈ A(Q) is torsion if and only if ĥ(P ) = 0. If Pn is a

generic sequence of points of A(Q) such that ĥ(P ) → 0 then the cardinality
of the sets EPn = {P σ

n | σ ∈ GK} tends to ∞. (Hint: try to imitate the
case of Gm). All these facts are independent of the choice made in defining
the height.

The following results is due to Szpiro, Zhang and the author [40].

Theorem 2.10 Let AK an abelian variety defined over a number field K.
For all embedding σ : K → C we denote by µσ the canonical probability
measure on Aσ = AK ⊗σ C ' Γσ\Cg. Let Pn be a generic sequence of points

of A(Q) such that ĥ(P ) → 0. Then for all σ : K → C the sets σ(EPn) are
µσ-equidistributed on Aσ.

The proof uses Arakelov theory (see [40]).

2.2.3 Equidistribution of CM elliptic curves.

The j-invariant establishes a bijection between C and the set of isomorphism
classes of elliptic curves over C. The endomorphism ring End(E) of an elliptic
curve E over C is either Z or an order in an imaginary quadratic extension
of Q. An elliptic curve is said to be CM ( meaning complex multiplication)
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if End(E) 6= Z. A complex number x is said to be CM if the corresponding
elliptic curve over C is CM.

Let us recall a few facts about CM elliptic curves. A CM elliptic curve
is defined over Q. Let K be an imaginary quadratic extension of Q and
OK ⊂ K be the ring of integers of K. Any order in OK is of the form
OK,f = Z + fOK for a unique integer f ≥ 1. For f ≥ 1 let ΣK,f be the
set of isomorphism classes of pairs (E,α), with E a CM elliptic curve and
α : OK,f → End(E) an isomorphism of rings. The group Gal(Q/K) acts
transitively on ΣK,f .

Let Pic(OK,f ) be the Picard (or class) group of OK,f and h = hK,f . Then
the cardinality of ΣK,f is h. Let HK,f be the maximal abelian extension of
K which is unramified outside f . Then for all E ∈ ΣK,f we have K(j(E)) =
HK,f and class field theory gives an isomorphism Pic(OK,f ) ' Gal(HK,f/K).
Let dE = dK,f be the absolute value of the discriminant of OK,f . By the
Brauer-Siegel theorem we get for all ε > 0

d
1/2−ε
E �ε h = |ΣK,f | �ε d

1/2+ε
E . (4)

The modular group SL(2,Z) acts properly discontinuously on the upper
half plane H by (

a b
c d

)
.z =

az + b

cz + d
.

The modular curve Y = SL(2,Z)\H is the set of isomorphism classes of
elliptic curves over C. The Poincaré measure dx dy

y2 on H is SL(2,R)-invariant

and the volume of a fundamental domain for this measure is finite. (We
therefore say that SL(2,Z) is a lattice of H). Let dµ0 = 3

π
dx dy

y2 the induced
probability measure on Y ' C.

The following result is due do to Duke [18]:

Theorem 2.11 (Duke) As dK,f →∞ the ΣK,f are µ-equidistributed.

The case of fundamentals discriminants (i. e f = 1) is the main result of
[18]. The extension to the general case using Hecke operators is given in ([9]
th. 2.4).

2.3 Equidistribution of Hecke points.

Let H be the upper half plane, Γ = SL(2,Z) and Y = Γ\H. Let dµ0 be
the Poincaré metric and D0 = y2( ∂2

∂x2 + ∂2

∂y2 ) the associated Laplacian. Let
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L2(Γ\H, dµ0) be the space of µ0-square integrable Γ-invariant functions on
H.

The Hecke correspondences Tn on X(1) are defined by

Tn.z =
∑
ad=n

∑
0≤b<d

az + b

d
. (5)

If s ∈ C we define σs(n) =
∑

d/n d
s. The degree of Tn as a correspondence is

then σ1(n) .
We have an induced action on functions on X(1) given by:

T nf(z) =
Tn

σ1(n)
f(z) =

1

σ1(n)

∑
y∈Tn.z

f(y). (6)

The following result is proved in [9] theorem 2.1. The proof is also taken
from this paper. We just replaced the upper bound for eigenvalues of Tn

given in [6] by the better bound obtained recently by Kim and Sarnak [28].
(We therefore just replaced 5

28
by 7

64
).

Theorem 2.12 a) For all f in L2(X(1), dµ0) T n.f converges to
∫

X(1)
f(ζ)dµ0(ζ)

in L2(X(1), dµ0). More precisely For all f in L2(X(1), dµ0) and for all ε > 0,
there exists a constant Cε, (depending only on ε), such that:

‖T nf −
∫

X(1)

f(ζ)dµ0(ζ)‖ ≤ Cεn
− 1

2
+ 7

64
+ε‖f‖. (7)

b) Let f be a bounded C∞ function on X(1) such that D0f is bounded.
For all ε > 0,there exists Cε,z,f such that

|T nf(z)−
∫

X(1)

f(ζ)dµ0(ζ)| ≤ Cε,z,fn
− 1

2
+ 7

64
+ε. (8)

c) For all bounded continuous function f on X(1) and all z ∈ X(1),we
have

lim
n→+∞

T nf(z) =

∫
X(1)

f(ζ)dµ0(ζ). (9)

The convergence is uniform on compact sets.
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2.3.1 Spectral decomposition of L2(X(1), dµ0)

We have the ”spectral decomposition”

L2(X(1), dµ0) = ⊕n≥0 C[ϕn]⊕ E (10)

with ϕn an orthonormal family of eigenfunctions of D0 with associated eigen-
values −λn and E is the continuous part of the spectrum. We write as usual
sn et rn the complex numbers such that λn = sn(1 − sn) = 1/4 + r2

n (rn is
a real number). It’s possible to choose the ϕn eigenvectors for all the Hecke
operators Tn . We suppose that this choice is made from now.

The part relative to the continuous spectrum is given by the following
isometry:

E : L2(R+) → E (11)

h 7→ 1√
2π

∫ +∞

0

h(t)E∞(z,
1

2
+ it) dt

here L2(R+) is the set of functions on R+ square integrable for the Lebesgue
measure; E∞(z, s) is the Eisenstein series at the cusp∞, given by the formula

E∞(z, s) =
1

2

∑
(m,n)=1

1

|mz + n|2s
.

Let α ∈ L2(X(1), dµ0) be spectrally decomposed as

α(z) =
∑
n≥0

Anϕn(z) +

∫ +∞

0

h(t)E∞(z,
1

2
+ it) dt. (12)

Then

An = (α, ϕn) =

∫
X

α(z)ϕn(z) dµ0(z)

h(t) = 1
2π

∫
X

α(z)E∞(z,
1

2
− it) dµ0(z)

(at least if α is C∞ with compact support). The L2 norm of α is then

‖α‖2 =
∑

n

|An|2 + 2π

∫ +∞

0

|h(t)|2 dt. (13)

If α(z) is C∞ with compact support then the spectral decomposition (12)
is absolutely convergent and is uniformly convergent on compact sets (see
[27] theorems (4.7) and (7.3)).
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2.3.2 Proof of theorem 2.12

We start the proof of theorem 2.12 in the particular case f = ϕn for some
n ∈ N and the case where f appears in the continuous spectrum of D0. The
general case is then obtained using the spectral decomposition (12).

For f = ϕ0 the constant function the theorem 2.12 is clear as the degree
of Tn as a correspondence is σ1(n).

Lemma 2.13 For all k ≥ 1, and all z ∈ X(1):

lim
n→∞

Tnϕk(z) = 0 =

∫
X(1)

ϕkdµ0. (14)

We know that ϕk is an eigenfunction of Tn. We define αk(n) to be the
associated eigenvalues:

Tn.ϕk = αk(n)ϕk.

The Ramanujan-Petersson conjecture predicts that:

|αk(n)| ≤ d(n)n1/2,

where d(n) = σ0(n) is the number of positive divisors of n. The best known
result towards the Ramanujan-Peterssonn conjecture is [28]:

|αk(n)| ≤ d(n)n1/2+ 7
64 . (15)

This improves the result of [6] where the bound with 5
28

instead of 7
64

was
obtained.

For all ε > 0 and n big enough

|Tnϕk(z)| = |αk(n)ϕk(z)

σ1(n)
| ≤ n−1/2+ 7

64
+ε|ϕk(z))|. (16)

Lemma 2.14 Let f be a function in E ∩D(X(1)). Then

lim
n→∞

Tnf(z) = 0 =

∫
X(1)

fdµ0. (17)

Proof. There exists a function h(t) ∈ L2(R+) such that:

f(z) =

∫ ∞

0

h(t)E∞(z,
1

2
+ it)dt
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This last integral is absolutely convergent. We recall that E∞(z, s) is an
eigenform of the Hecke operators Tn:

TnE∞(z, s) = nsσ1−2s(n)E∞(z, s).

We therefore obtain

Tnf(z) = n1/2

∫ ∞

0

nitσ−2it(n)h(t)E∞(z,
1

2
+ it)dt. (18)

Therefore for all ε > 0 and all n� 0 we get:

|T nf(z)| ≤ n−1/2+ε

∫ ∞

0

|h(t)E∞(z, s)|dt. (19)

We can now give the proof of theorem 2.12 Let f be a function in
L2(X(1), dµ0)). The spectral decomposition of f is written:

f(z) =
∑
k≥0

Akϕk(z) +

∫ +∞

0

h(t)E∞(z,
1

2
+ it) dt. (20)

We define

Jn = ‖T nf −
∫

X(1)

f(ζ)dµ0(ζ)‖.

Then

Jn = ‖
∑
k≥1

Akαk(n)φk

σ1(n)
+

n
1
2

σ1(n)

∫ ∞

0

nitσ−2it(n)h(t)E∞(z, s)dt‖.

Using (13),we obtain:

J2
n =

1

σ1(n)2

∑
k≥1

|Ak|2|αk(n)|2 + 2π
n

σ1(n)2

∫ ∞

0

|h(t)|2|σ−2it(n)|2dt.

The proof of the (a) of (2.12) is obtained using the upper bounds for αk(n)
given in the equation (15).

We define D(X(1)) as the space of C∞ bounded functions on X(1) such
that D0f is bounded.
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Let f ∈ D(X(1)) and z ∈ X(1). Using (16) and(19) we find for all ε > 0
and all n� 0 the upper bound:

|T nf(z)− A0| ≤ n−1/2+5/28+ε(
∑
k≥1

|Akϕk(z)|+
∫ ∞

0

|h(t)E∞(z, s)|dt).

This ends the proof of the part (b) of (2.12) as A0 =
∫

X(1)
f(z)dµ0(z) and

as f ∈ D(X(1)) the spectral decomposition is absolutely convergent

We finally suppose that f ∈ C0(X(1)). Let z ∈ X(1) and ε > 0.We can
find φ ∈ D(X(1))such that

supx∈X(1)|f(x)− φ(x)| ≤ ε.

Using part (b) of the theorem 2.12, we know that for all n� 0:

|T nφ(z)−
∫

X(1)

φdµ0| ≤ ε.

We define ln as In = |T nf(z)−
∫

X(1)
fdµ0|. We therefore obtain that

In ≤ |T nf(z)− T nφ(z)|+ |T nφ(z)−
∫

X(1)

φdµ0|+ |
∫

X(1)

(φ− f)dµ0| ≤ 3ε.

This ends the proof of the part (c) of the theorem 2.12.

2.3.3 Higher rank generalization

The result of the previous sections can be generalized to an arbitrary almost
simple simply connected linear group GQ (as SL(n)Q or Sp(n)Q). A proof
using harmonical analysis as in the previous part is given in [8] and [9]. The
method gives a convergence rate which is often optimal. This is the case for
SL(n)Q or Sp(n)Q if n ≥ 3. Note that optimal results are obtained without
using the (unknown) generalized Ramanujan conjecture for parameters of
automorphic representation of SL(n)Q or Sp(n)Q. The extension to arbitrary
reductive groups is in general easy. A proof of a slightly more general result
(without a convergence rate) is obtained by Eskin and Oh [21] by ergodic
methods.
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3 The Manin-Mumford and the André–Oort

conjecture.

3.1 Abstract form of the conjectures

The Manin-Mumford conjecture about torsion points of abelian varieties and
the André-Oort conjecture about CM points on Shimura varieties (ex.: the
moduli space of principally polarized abelian varieties, Hilbert modular va-
rieties or product of modular curves...) can abstractly be stated in a unified
way. The purpose of this section is to explain these conjectures and the
relation with some theorems or conjectures about equidistribution.

Let X be an algebraic variety over C. Let S(X ) be a set of irreducible
subvarieties of X. A subvariety Z ∈ S(X ) is called special and a special
subvariety of dimension 0 is called a special point. We say that S(X ) is an
admissible set of special subvarieties if :

1. X ∈ S(X ).

2. For all Z ∈ S(X ) the set of special points x ∈ Z is Zariski dense in Z.

3. An irreducible component of an intersection of special varieties is a
special variety.

Remark 3.1 As a consequence of property 3, if W is a subset of X(C) there
exists a smallest special subvariety ZW among special subvarieties containing
W .

The main examples of admissible sets of special subvarieties are:
(i) An abelian variety X = A, S(A) is the set of torsion subvarieties. A

torsion subvariety is the translate by a torsion point of an abelian subvariety.
The special points are the torsion points.

(ii) A torus X = T , S(T ) is the set of torsion subvarieties. A torsion
subvariety is the product of a point of finite order by a subtorus. The special
points are the points of finite order.

(iii) A Shimura variety X = S, S(S) is the set of subvarieties of Hodge
type. A subvariety of Hodge type is an irreducible component of the translate
by a Hecke operator of a sub-Shimura variety. The special points are the CM
points. This case will be detailed in section 3.3.
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Note as a general rule that everything is known in the case of an abelian
variety or in the case of a torus but despite recent progress the case of Shimura
variety is mainly conjectural. Other situations as mixed Shimura varieties
(see [33]) or semi-abelian varieties (see [7], [15] ) can be considered. It’s
possible that other situations coming from variations of Hodge structures
could be considered.

Conjecture 3.2 (Abstract form) There are 2 equivalent ways of formulating
the conjecture:

(a): An irreducible component of the Zariski closure of a set of special
points is a special subvariety.

(b) Let Y be an algebraic subvariety of X. There exists special subvarieties
{Z1, . . . , Zr} with Zi ⊂ Y such that if Z ⊂ Y is a special subvariety then

Z ⊂ ∪r
i=1Zi.

The conjecture in this abstract way is certainly too optimistic. For ex-
ample you could take for X any projective variety of dimension g ≥ 2 and
for S(X ) the union of X and the set of all points of X. ( I don’t know such
a trivial counterexample if we impose that S(X ) is countable in the defini-
tion of an admissible set). Nevertheless it may be useful to understand it in
this form to see what is really used in the important examples. Note that
if Y ⊂ X is a curve the conjecture predicts that Y is special if and only if
Y contains infinitely many special points. Let’s prove that the two forms of
the conjecture are indeed equivalent:

Let Y be an algebraic subvariety of X and ΣY the set of special points
contained in Y . Let {Z1, . . . , Zr} be the components of the Zariski closure
of ΣY . If (a) is true then the Zi are special and have the properties of (b).

Let Σ be a set of special points and Y a component of the Zariski closure.
By (b) there exists a finite set {Z1, . . . , Zr} of special subvarieties of Y such
that all the special subvarieties of Y are contained in one of the Zi. As Y
is the Zariski closure of Σ, Y ⊂ ∪r

i=1Zi and there exists i ∈ {1, . . . , r} such
that Y = Zi. Therefore Y is special.

The theory is even more interesting when:
(a) The variety X is defined over a number field K and the special points

are defined over Q.
(b) A special subvariety Z of X is canonically endowed with a probability

measure µZ such that the Zariski closure of Supp(µZ) is Z.

15



Definition 3.3 An admissible set S(X) of special subvarieties of X with
properties (a) and (b) is said to be strongly admissible.

The property (a) implies that the special subvarieties of X are defined
over number field. (A subvariety containing a dense set of points defined over
Q is defined over Q). If P is a special point the canonical probability measure
on P is µP = δP . As in section 2.2 we fix an embedding of K in C and X(Q)
is realized as a subset of X(C) = X. Let EP = EP,K = {P σ, σ ∈ GK} and

∆P = ∆P,K =
1

|EP |
∑

x∈EP

δy.

Definition 3.4 Let X be a variety and S(X) a strongly admissible set of
special subvarieties. A sequence Pn of points in X(C) is said to be strict
(relatively to (X,S(X)) if for all special subvariety Z 6= X of X the set
{n ∈ N | Pn ∈ Z} is finite.

The expected equidistribution conjecture is

Conjecture 3.5 (abstract form) Let X be a variety and S(X) an admissible
set of special subvarieties. Let K be a number field over which X is defined.
Let Pn be a strict sequence of special points of X(C) then the sets EPn,K are
µX-equidistributed: the associated sequence of probability measure ∆n,K =
∆Pn,K weakly converges to µX .

Proposition 3.6 Conjecture 3.5 implies conjecture 3.2.

Let Σ be a set of special points and Y a component of the Zariski closure
of Σ. Then ΣY = Σ ∩ Y is a Zariski dense subset of special points of Y .
Let Z = ZY be the smallest special subvariety of X containing Y . The set
S(Z) of special subvarieties of X contained in Z is strongly admissible. The
subvariety Z is defined over a number field L.

Lemma 3.7 There exists a strict sequence of special points of ΣY (relatively
to (Z,S(Z)).

The set of special subvarieties is countable as special subvarieties are
defined over Q. We can therefore write S(Z) = {(Zn), n ∈ N}. For all
n ∈ N we define

Σn,Y = {P ∈ ΣY |P /∈ ∪n
i=1Zi }.
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As ΣY is Zariski dense in Y , for all n ∈ N, In 6= ∅. We can therefore choose
Pn ∈ Σn,Y . By construction Pn is a strict sequence.

Using conjecture 3.5 we see that the sequence ∆Pn,L weakly converges to
µZ . As Supp(∆Pn,L) is contained in L for all n (and Y is closed) we find that
Supp(µZ) ⊂ Y . As the Zariski closure of Supp(µZ) is Z (by property (b)),
Y = Z. Therefore Y is a special subvariety as predicted by conjecture 3.2.

In fact a even more general result is expected. Let X be an algebraic
variety defined over a number field K and S(X) a strongly admissible set of
special subvarieties. For all Z ∈ S(X), the set

O(Z) = {Zσ | σ ∈ GK}

is finite and contained in S(X). Let ∆Z be the measure

∆Z =
1

|O(Z)|
∑

µZσ .

Let P(X) be the set of Borel probability measure on X and

Q(X) = {∆Z | Z ∈ S(X)}.

The most optimistic conjecture about equidistribution is:

Conjecture 3.8 The subset Q(X) of P(X) is compact. If ∆Zn is a sequence
of measure in Q(X) weakly converging to µZ then for all n� 0, Supp(µZn) ⊂
Supp(µZ).

We will discuss results for this conjecture for abelian varieties in sections
3.2 and some related results for some sequences µZn where Zn is a special
subvariety (and therefore geometrically irreducible) in section 4.

3.2 The Manin-Mumford and the Bogomolov conjec-
ture.

In the case of abelian varieties, all the abstract theory of the previous section
is proved. If A is an abelian variety, a special point is a torsion point and a
special variety is a torsion variety. Let Tor(A) be the set of torsion points of
A. The conjecture 3.2 in this case is due to Manin and Mumford:
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Theorem 3.9 Let A be an abelian variety and Σ and X a subvariety of A.
Then

X ∩ Tor(A) = ∪r
i=1Ti ∩ Tor(A)

for some torsion subvarieties (T1, . . . , Tr).

A first proof of the conjecture was given by Raynaud [36], (see [39] for the
case of a curve) using p-adic method. Hindry [25] gave a proof using Galois
theory and diophantine approximation. Hrushowski [26] gave a proof using
ideas from logic (model theory of field). As model theory of field is not so far
from the theory of constructible set in algebraic geometry it’s not completely
a surprise that Pink and Roesler [34] where able to translate in a short and
efficient way Hrushowski’s proof in the language of algebraic geometry (and
some Galois theory). Finally a proof using Arakelov theory and ideas from
”equidistribution of points with small height” of the Bogomolov conjecture
(to be discussed later in this section) was given by Zhang [49] and the author
[41]. As the Bogomolov conjecture contains the Manin-Mumford conjecture,
this gives an almost completely analytic proof of the Manin-Mumford con-
jecture.

Recall that if (an)n∈N is a sequence of algebraic points of an abelian variety
A defined over a number field we say that (an) is a generic sequence (resp.
a strict sequence) If for any proper subvariety Y ⊂ A (resp. for any proper
torsion subvariety Y ⊂ A) the set

{n ∈ N, an ∈ A(Q)}

is finite.

Remark 3.10 With these definitions we can rephrase the Manin-Mumford
conjecture in the following way: ”Any strict sequence of torsion points of
A(Q) is generic”. If an is a strict sequence of torsion points of A(Q), Y a
proper subvariety of A such that TY = {n ∈ N, an ∈ Y (Q)} is not finite.
The Manin-Mumford conjecture implies that the components of the Zariski
closure of the an with n ∈ TY are torsion subvarieties containing infinitely
many terms of the sequence an. This contradicts the hypothesis that an is
strict. The other direction can be proved in the same lines as the proposition
3.6 and is left as an exercise.

When you combine the Manin-Mumford conjecture and the theorem 2.10
you obtain the following results [40] in the direction of the conjecture 3.8:
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Theorem 3.11 Let AK an abelian variety defined over a number field K.
For all embedding σ : K → C we denote by µσ the canonical probability mea-
sure on Aσ = AK⊗σ C ' Γσ\Cg. Let Pn be a strict sequence of torsion points
of A(Q). Then for all σ : K → C the sets σ(EPn) are µσ-equidistributed on
Aσ.

For abelian varieties, the full conjecture 3.8 is a consequence of the ex-
tension of this last result to the equidistribution of Galois orbits of special
subvarieties due (independently) to Autissier [2] and Baker-Ih [3].

The Bogomolov conjecture is a generalization of the Manin-Mumford con-
jecture once we recall that a point P of an abelian variety defined over a
number field is a torsion point if and only if the Néron-Tate heights ĥ(P ) of
P is 0 :

Conjecture 3.12 (Bogomolov) Let A be an abelian variety defined over a
number field. Let Y be a non torsion subvariety of A. There exists c > 0
such that the set

{P ∈ Y (Q) | ĥ(P ) < c}

is not Zariski-dense in Y .

The idea behind this conjecture is the following. Lang’s conjecture pre-
dicts that the set of rational points Y (K) of a variety of general type over
a number field K should not be Zariski dense in Y . This has been checked
by Faltings [23] for non torsion varieties (the case of curve [22] is the cele-
brated Mordell conjecture). Such a variety certainly contains infinitely many
algebraic points but Y (Q) is not to big: It’s a discrete set in the Néron-Tate
topology.

As in the remark 3.10, the Bogomolov conjecture is equivalent to the
statement that ”any strict sequences an of points ofA(Q) such that ĥ(an) → 0
is a generic sequence”. The statement of theorem 3.11 remains true with
”torsion points” replaced by points with Néron-Tate height tending to 0.

The proof of this conjecture in the case of a curve in its jacobian is
given in [41] and the general case is proved along the same lines in [49]. It’s
unfortunately beyond the scope of these notes to give a detailed account of
the proof of the Bogomolov conjecture. The interested reader can read the
account given in Bourbaki’s seminar by Abbes [1].

Let’s just sketch the principle of the proof in the case of a curve in its
jacobian. The starting point is a general theorem about the ”equidistribution
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of generic sequences of points with small heights” [40] for more general heights
than the Néron-Tate height on abelian varieties.

Let X a curve of genus g ≥ 2 defined over a number field K and fix an
embedding φ of X in its jacobian J . The canonical height ĥ on J(Q) induces
a canonical height on X(Q). Fix an embedding of K in C, then XC is a
Riemann surface. We have a natural hermitian inner product on the space
H0(XC,Ω

1
X) of holomorphic differential forms on XC given by

(α, β) =
i

2

∑
X

α ∧ β.

Let {ω1, . . . , ωg} be an orthonormal basis of H0(XC,Ω
1
X). Then we define a

canonical (1, 1)-form µ on XC by setting

µ :=
i

2g

g∑
k=1

ωk ∧ ωk.

The form µ does not depend on a choice of an orthonormal basis. The
associated measure µ is called the canonical or the Arakelov measure.

Let Pn ∈ XK(Q) be a generic sequence such that ĥ(Pn) → 0. The result
of [40] implies that the associated sequence of Galois orbits (as defined in
section 2.2) converges weakly to µ.

Let φg : Xg → J be the morphism (x1, . . . , xg) 7→
∑g

i=1 φ(xi). Let
πi = Xg → X. By a diagonal process, it’s possible to construct a generic
sequence yn = (x1,n, . . . , xg,n) of Xg(Q) such that for all i, ĥ(xi,n) → 0.
Using the result of [40], we find that the associated sequence of Galois orbits
converges weakly to the measure

µg = π∗1µ ∧ . . . ∧ π∗gµ.

As zn = φg(yn) is a generic sequence of J(Q) such that ĥ(zn) → 0, using
theorem 2.10 we know that the associated sequence of Galois orbits converges
weakly to the normalized Haar measure µJ of J .

Combining the two results (and using easy results about the morphism
φg) we obtain the equality:

φ∗gµJ = g!µg = g!π∗1µ ∧ . . . ∧ π∗gµ.

It’s easy to see that µg is everywhere positive and that φ∗gµJ is 0 at the
points where the morphism φg is singular (for example at (P0, . . . , P0) for a
Weierstrass point of XC). This contradiction finishes the proof.
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3.3 The André-Oort conjecture.

The André-Oort conjecture is the analogue for Shimura varieties of the
Manin-Mumford conjecture for abelian varieties. It’s not possible to give
here a complete account of Shimura varieties. The interested reader should
see [16], [17] or [29] but two aspects should be kept in mind.

1. Shimura varieties are hermitian locally symmetric spaces.

2. Shimura varieties are moduli-spaces for interesting objects as abelian
varieties.

The aim of this part is to describe the special points and special subva-
rieties in this context and to formulate the André-Oort conjecture. We will
focus on examples.

Hermitian locally symmetric space.
Let G = GQ be a connected reductive group over Q, G(R)+ the connected

component of 1 of G(R) and K∞ a maximal compact subgroup of G(R). Let
Z(G) be the center of G. Then G is the almost direct product

G ' Z(G)G1G2 . . . Gr

for some Q-simple groups Gi. We make the following assumption:
(*): For all i ∈ {1 . . . , r}, Gi(R) is not compact.
The space X+ = G(R)/Z(G)(R)K∞ is called a symmetric space. When

X+ is endowed with an H(R)+-invariant complex structure we say that X+

is an hermitian symmetric space. A couple (GQ, X
+) is called a ( connected)

Shimura datum. Deligne [16], [17] proved that such an X+ is a connected
component of the G(R)-conjugacy class X of a morphism of algebraic groups

α : S :→ GR

Here S = ResC/RGm is the Deligne torus (so S is C∗ as an algebraic group.)
If x ∈ X+, we’ll write x(S) ⊂ G(R) for the image of the associated morphism
x : S → GR. A Shimura datum is defined in [16] as a couple (GQ, X).

The simple groups GR such that X+ = G(R)/K∞ is hermitian symmetric
are well known inside the classification of linear semi-simple non compact
groups over R. For example the symplectic group Sp(2, g), unitary groups
U(p, q) or orthogonal groups So(N, 2) have an associated symmetric space
which is hermitian. The symmetric spaces associated to SL(n,R) (n ≥ 3) or
So(p, q) (with p 6= 2 and q 6= 2) are not hermitian.
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A subgroup Γ of G(Q)+ = G(Q) ∩ G(R)+ is called an arithmetic lattice
if Γ is commensurable to GZ(Z) for a Z-structure on GQ. This notion is
independent of a choice of a Z-structure on GQ. A standard way of producing
such a Z-structure is to fix an embedding of GQ in GL(n,Q) and to take for
GZ the Zariski closure of GQ in GL(n,Z).

Any symmetric space X = G(R)/K∞ is endowed with a G(R)-invariant
measure. If Γ is an arithmetic lattice, this measure induces a measure on
Γ\X+. The volume of S = Γ\X+ is finite for this measure (hence the notion
of lattice—see Borel [5] for a proof). A space of the form Γ\X+ for a lattice
Γ is called a locally symmetric space. Any locally symmetric space S is
therefore endowed with a canonical probability measure µS.

If X+ is hermitian symmetric and Γ is an arithmetic lattice then S =
Γ\X+ is endowed with a complex structure. Such a S is an (arithmetic)
hermitian locally symmetric space. The main fact is the relation with the
world of algebraic geometry :

(Baily-Borel ) There exists a unique structure of algebraic variety on
S = Γ\X+ over C such that for any algebraic variety T , any analytic mor-
phism from T to S is induced from a morphism of algebraic varieties. With
this structure S is quasi-projective. If Γ is torsion free then S is smooth.

If moreover Γ ⊂ G(Q) is a congruence lattice (Γ contains the Kernel Γ(N)
of the map GZ(Z) → GZ(Z/nZ) for some n ∈ N) we say that S = Γ\X+ is
a ”connected Shimura variety”.

Example 1 G = SL(2,Q), K∞ = SO2(R), X+ = H is the upper half
plane. If Γ is a congruence subgroup of SL(2,Q) S = Γ\H is a modular
curve and S is a moduli space for elliptic curves with an additional structure
defined by Γ.

Example 2 G = GSp(2g,Q), K∞ = Ug(C), X+ = Hg is the Siegel-
Half plane. If Γ = Γ(N) then S = Ag,N is the moduli space of principally
polarized abelian varieties of dimension g with full N - level structure.

Example 3 Let F be a totally real extension of Q of degree g. GQ =
ResF/QSL(2, F ). Then G(R) = SL(2,R)g, K∞ = SO2(R)g, X+ = Hg.
Take Γ = SL2(OF ), then S = SL2(OF )\Hg is an Hilbert modular variety
parametrizing polarized abelian varieties A of dimension g with an imbed-
ding of OF in the endomorphism of A.

Example 4 Let F be as before and B a quaternion algebra over F . Then
B(R) = M2(R)d×Hg−d (where H is the usual quaternions over R). Let GQ be
the group of elements of B∗ with reduced norm 1 and Γ the units of norm one
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in B∗. Then G(R) = SL2(R)d×SO3(R)g−d, K∞ = SO2(R)d×SO3(R)g−d and
X+ = Hd. Then S = Γ\Hd is a ”quaternionic Shimura” variety. Example 3
corresponds to B = M(2, F ). When d = 1, S is a curve (a Shimura curve).
Any curve which is a ”connected Shimura” variety is obtained from such a
quaternion algebra.

Hecke correspondences. Let S = Γ\G(R)+/K∞ = Γ\X+ a connected
Shimura variety. Let q ∈ G(Q), as Γ is an arithmetic lattice q−1Γq is com-
mensurable to Γ: Γ∩ q−1 ∩Γq is of finite index in Γ and q−1Γq. Let C(Γ) be
the commensurator of Γ

C(Γ) = {g ∈ G(R) | gΓg−1 commensurable withΓ}.

If G = Gad then C(Γ) = G(Q), for a general reductive group over Q see ([35],
prop. 4.6 p. 206).

Let q be an element of C(Γ). Let Sq = Γ ∩ q−1Γq\X+ and αq the finite
map Sq → S induced from the inclusion Γ∩q−1∩Γq ⊂ Γ. The translation by
q on X+ (given by x 7→ g.x induces a second finite morphism βq : Sq → S.

Let Tq be the image in S × S of Sq by the map (αq, βq). Then Tq is an
algebraic correspondence on S. Such a correspondence is called a modular
correspondence. For all x ∈ S, we have ”Tq.s = βq(α

−1
q (x))” where we have

to count with multiplicities the points in (α−1
q (x)). If Γ acts on X+ without

fixed points the maps αq and βq are unramified (therefore for all x ∈ S,
(α−1

q (x)) has exactly deg(α) = [Γ ∩ q−1 ∩ Γq : Γ] points). If S = SL(2,Z)\H

and q =

(
l 0
0 1

)
for a prime number l then Tq is the usual Hecke operator

Tl discussed in section 2.3.
Special subvarieties.
Let S be a connected Shimura variety, we would like to define a set S(S)

of special subvarieties with the properties (1, 2, 3) of section 3.1. A subvariety
Z in S(S) should be (using our two points of view) a sub-hermitian locally
symmetric space and a moduli space for objects of S with some additional
structures (as polarization, level, endomorphism...).

If (G1, X
+
1 ) is a Shimura datum with G1 ⊂ G (as Q-algebraic groups)

inducing an inclusion X+
1 ⊂ X, we say that (G1, X

+
1 ) is a sub-Shimura

datum. Γ1 = Γ∩G1(R)+ is an arithmetic lattice of G1. A special subvariety
of S is the image S1 of Γ1\X+

1 for a sub-Shimura-datum (G1, X
+
1 ).

For all x ∈ X+ the subgroup ofG(R)+ fixing x is the product of Z(G)(R)∩
G(R)+ and a maximal compact subgroup Kx of G(R)+. If there exists a torus
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TQ of GQ such that

x(S) ⊂ T (R)+ ⊂ Z(G)(R)+Kx

then (TQ, {x}) is a sub-Shimura datum. We say that x is a special point of
X+ and its image in S is a special point of S. The set of special points of S
is obtained in this way.

The relation with the theory of complex multiplication is the following. A
CM-field is a totally imaginary extension of degree 2 of a totally real number
field. A simple abelian variety A of dimension g is CM if the endomorphism
EndA⊗Q of A is a CM field of dimension 2g. An abelian A variety is said
to be CM if A is isogenous to a product of simple CM abelian varieties. If
G = GSp(2g,Q) (as in example 2) and x ∈ Hg. Then x(S) is contained
in the real points T (R)+ of a Q-torus TQ of GQ if and only if the image of
x in S = Ag,N corresponds to a CM abelian variety. A similar description
in terms of endomorphism of Hodge structure exists for a general Shimura
variety. Therefore a special point is often called a CM point.

With these definitions one can check that special points are dense in the
Zariski topology in any special variety (they are in fact dense in the analytic
topology). The existence of one CM point is given by the study of the space
TG of maximal tori of GQ. Suppose that G is semi-simple. It can be shown
that TG is a rational variety and that the locus of compact tori is open in
the usual topology. Any Q-rational point of TG which is in this open set will
define a CM point. Note that if x ∈ S is special then for all g ∈ G(Q), Tg.x
is a finite union of special points and the union of the Tg.x, for g ∈ G(Q) is
dense in the analytic topology of S.

A component of the intersection of special subvarieties is special (this is
not clear from the point of view of hermitian locally symmetric spaces, but
from the moduli point of view the intersection is interpreted as the locus of
points with the additional structures of all the subvarieties we are intersect-
ing).

A component of the image by a Hecke operator of a special variety is a
special variety.

Example 1 The special subvarieties of S = SL(2,Z)\H are S and the
CM points corresponding to the CM elliptic curves studied in section 2.3.

Example 2 If S is a Shimura variety any Hecke correspondence Tq is a
special subvariety of the Shimura variety S × S.

Example 3 The j-function induces an isomorphism S = SL(2,Z)\H '
C. The special subvarieties of C× C are
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(i) S ' C.
(ii) Couples of CM points .
(iii) Curves of the form {x} × C (or C× x) for some CM point x.
(iiii) Modular correspondences Y0(N) = Γ0(N)\H associated to qN =(
N 0
0 1

)
∈ GL(2,Q): Y0(N) is the image in C×C of the map (j(τ), j(Nτ)).

Y0(N) is the (coarse) moduli space for triples (E,E ′, α : E → E ′) where α
is a cyclic isogeny of degree N .

Example 4 For each totally real number field F of degree g the associated
Hilbert modular varieties are special subvarieties of Siegel modular varieties.
This is clear from the ”moduli interpretation” and the translation in terms of
Shimura data is for example explained in ([44], chap. 9.1) Any component of
a Hecke translate of an Hilbert modular variety is again an Hilbert modular
variety associated to an order A of OF .

The conjecture 3.2 in this case was formulated by André for a curve in a
general Shimura variety and by Oort for subvarieties of arbitrary dimension
in Ag.

Conjecture 3.13 (André-Oort) (a): An irreducible component of the Zariski
closure of a set of CM points is a special subvariety.

(b) Let Y be an algebraic subvariety of X. There exists special subvarieties
{Z1, . . . , Zr} with Zi ⊂ Y such that if Z ⊂ Y is a special subvariety then

Z ⊂ ∪r
i=1Zi.

A deep fact of the theory of Shimura varieties is that any Shimura va-
riety is ”canonically” defined over a number field. In particular CM points
are defined over Q. One proof of this fact is given by Faltings [24] using a
rigidity argument. Another proof is an important achievement of the work of
several mathematicians. Let’s just mention among them Shimura, Deligne,
Borovoi, Milne, Shih [30]. The fundamental fact which is not given by Falt-
ings’s approach is the knowledge of the field of definition (the reflex field)
of the Shimura variety which can be computed in terms of the Shimura da-
tum (G,X). Note that if you are allowed to use the adeles (as in Deligne’s
approach) then the Shimura variety

ShK(G,X) = G(Q)\X ×G(Af )/K

(where K is a compact open subgroup of G(Af )), is canonically defined
over the reflex field. With our definition, a Shimura variety is a connected
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component of ShK(G,X) and is defined over an abelian extension of the
reflex field.

Moreover a special subvarieties Z of a Shimura variety is a hermitian
locally symmetric space, therefore Z is endowed with a canonical probability
measure µZ such that Supp(µZ) = Z.

The set S(S) of special subvarieties is therefore ”strongly admissible”
(with the terminology of section 3.1). The general equidistribution conjecture
can then be stated:

Conjecture 3.14 The subset Q(S) of P(S) is compact. If ∆Zn is a sequence
of measure in Q(S) weakly converging to µZ then for all n� 0, Supp(µZn) ⊂
Supp(µZ).

The evidence for this conjecture is limited. The only known case is the
theorem of Duke explained in section 2.2.3: For S = SL(2,Z)\H, the Galois
orbits of CM points are equidistributed. The case of a Shimura curve associ-
ated to a quaternion algebra over Q is almost known by some work of Zhang
[50]. General results for equidistribution of the sequence of probability mea-
sure associated to connected special subvarieties are obtained using ergodic
theory and will be described in section 4.3.

The ideas from the Arakelov theory (successful in the case of Abelian
varieties as described in section 3.2) are not applicable here because for any
reasonable theory of height, the height of CM points is unbounded (see [13]
for the case of CM elliptic curves).

3.3.1 Equidistribution of ”Toric orbits” of CM points

No general strategy for general Shimura varieties is known for the conjecture
3.14. The ideas behind Duke’s proof of the case of CM elliptic curves can
be extended to the case of Hilbert modular varieties ([11], [12]) and [45] or
more generally for Shimura varieties associated to quaternion algebra over
a totally real number field [50]. This extension unfortunately doesn’t lead
to the equidistribution of Galois orbits of CM points (and therefore to the
André-Oort conjecture) but leads to the equidistribution of a bigger set: the
Toric orbits of CM points. Some attempts to obtain in some cases equidis-
tribution of Galois orbits of CM points are given in [45] and [50]. See section
4.2.2.
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4 Equidistribution of special subvarieties.

4.1 The case of abelian varieties.

Let A = Γ\Cn be a complex abelian variety. An abelian subvariety B of A is
canonically endowed with a probability measure µB such that Supp(µB) = B.

Let P(A) be the set of Borel probability measures on A and

Q(A) = {µB, with B an abelian subvariety of A}.

Proposition 4.1 The set Q(A) is compact and if µBn is a sequence of Q(A)
weakly converging to µB then for all n � 0, Bn is an abelian subvariety of
B.

A sequence Bn of abelian subvarieties of A is said to be strict (relatively
to A) if for all proper abelian subvariety B of A the set {n ∈ N | Bn ⊂ B}
is finite. For formal reasons the proposition is equivalent to

Proposition 4.2 Let Bn be a strict sequence of abelian subvarieties of A
then µBn weakly converges to µA.

Let’s recall why the two propositions are equivalent: Let Bn be a sequence
of abelian subvarieties. Let E be the set of abelian subvarieties ofA containing
infinitely many Bn’s. Let A′ be a minimal element of E . Replacing Bn by
a subsequence we can suppose that Bn is a strict sequence of A′ and the
proposition 4.2 implies that µBn is weakly converging to µA′ . The implication
”proposition 4.1 implies proposition 4.2” is simpler (and left as an exercise).

The proof will use only classical Fourier theory. The first step consists in
”forgetting the complex structures”:

4.1.1 The flat case

In this part we write G = Qn, X = Zn\Rn and π : Rn → the canonical
morphism. So X is just a C∞-variety but we define a set S(X) of special
subvarieties by

S(X) = {Z = π(H ⊗Q R) with H a Q-vector subspace of G}.

Every Z = π(H ⊗Q R) is canonically endowed with a probability measure
coming from the Lebesgue measure on H ⊗Q R.
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In this situation we can formulate the analogue of propositions 4.1 and
4.2. As in the previous part the 2 statements are equivalent

The purpose of this part is to prove the analogue of proposition 4.2 :

Proposition 4.3 Let Zn be a strict sequence (relatively to the set of special
subvarieties) of special subvarieties of X then µZn weakly converges to µX .

For x ∈ Rn we write x for the class of x in Zn\Rn. The set X∗ of complex
character of X is in bijection with Zn: For all k = (k1, . . . , kn) ∈ Zn the
associated character χk of X is defined by

χk(x1, . . . , xn) = exp(2iπ
n∑

j=1

kjxj).

Any character of X is obtained in this way.
If χ = χk1,...,kn for some (k1, . . . , kn) ∈ Zn − {(0, . . . , 0)}, we write

Hχ = Hk1,...,kn

the Q-hyperplane of G defined by

n∑
j=1

kjxj = 0.

Then Hχ = Hχ′ with χ = χk1,...,kn and χ′ = χk′
1,...,k′

n
if and only if there exists

α ∈ Q such that k′i = αki for all i.
Let

Sχ = Sk1,...,kn = π(Hk1,...,kn ⊗ R)

be the associated maximal special subvariety of X. All the maximal special
subvarieties are obtained in this way. We define also

S̃χ = Hk1,...,kn ⊗ R.

Lemma 4.4 Let S be a special subvariety of X and χ = χk1,...,kn a non trivial
character of X. The restriction χS of χ on S is a character and χS = 1 if
and only if S ⊂ Sχ.
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The character χ is trivial on Sχ, therefore if S ⊂ Sχ then χS = 1. If
χS = 1, S = π(S̃) for a R-subvector space of G(R) and x = (x1, . . . , xn) ∈ S̃
then for all t ∈ R, t

∑n
i=1 kixi ∈ Z. Therefore

∑n
i=1 kixi = 0 and π(x) ∈ Sχ

and S ⊂ Sχ.
We can now give a proof of proposition 4.3. Let Tn be a strict sequence of

special subvarieties of X and µn the associated sequence of probability mea-
sure. Using Weyl’s criterion, we must show that for all non trivial character
of X

lim
n→∞

∫
Tn

χ dµn = lim
n→∞

∫
Tn

χTn dµn = 0.

Fix a character χ. As Tn is a strict sequence, for all n big enough Tn is
not contained in Sχ. By lemma 4.4 χTn is a non-trivial character of Tn and∫

Tn

χTn dµn = 0.

Exercise 4.5 Prove the following analogue of 4.1: let Sn be a sequence of
special subvarieties of X = Zn\Rn. Then there exists a special subvariety S
and a subsequence Snk

such that µnk
converges weakly to µS. Moreover for

all k � 0, Snk
⊂ S.

Remark 4.6 We can replace Zn by an arbitrary lattice Γ of Rn in the pre-
vious statements. There exists a linear automorphism uΓ of Rn such that

uΓ(Zn) = Γ. Such an automorphism induces an isomorphism of C∞

varieties;
uΓ : Zn\Rn −→ Γ\Rn.

The special subvarieties of Γ\Rn are just the images by uΓ of the special
subvarieties of Zn\Rn.

We can now give a proof of 4.2. Let A = Γ\Cn an abelian variety.
Identifying Cn with R2n and applying the previous remark we have a notion
of special subvarieties of A. (Warning: this notion is not the usual one for
abelian varieties). With this notion, abelian subvarieties of A are special
subvarieties but there exists much more special subvarieties corresponding
to non-complex subtori. (For example if A is a simple abelian variety, there
exists no sub-abelian varieties).

Let An be a sequence of abelian subvarieties of A and µn the associated
sequence of probability measures. Then using exercise 4.5, there exists a
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special subvariety S of A and a subsequence µnk
weakly converging to µS.

For all k big enough Ank
⊂ S. We therefore just need to prove that S is an

abelian subvariety. The group generated by the Ank
for k � 0 is generated

by finitely many abelian subvarieties and is therefore an abelian subvariety
B. So B ⊂ S, but the supports of the µnk

for k � 0 are contained in B
which is a closed subvariety. As µnk

→ µS, we find that S = supp(µS) ⊂ B
and therefore that S = B is an abelian subvariety of A.

4.2 Equidistribution of algebraic measures

Let GQ be a connected algebraic group over Q and X∗(GQ) be the set of
rational characters of (GQ). We say that GQ is of type F if X∗(GQ) =
{1}. Fix a Z-structure GZ on GQ (for example the Zariski closure of GQ
in GL(n,Z) for a faithful representation of G in GL(n,Q)). A subgroup
Γ ⊂ G(Q)+ is said to be an ”arithmetic lattice” if Γ is commensurable with
GZ(Z) (this doesn’t depends of the choice of the Z-structure on GQ).

Let G denote the real Lie group G = G(R)+ and let µG be the G-invariant
measure on X+ = Γ\G. Then the µG-volume of X+ is finite, hence the name
lattice, (see [35] thm. 4.13, p. 213).

If HQ ⊂ GQ is a connected Q-algebraic subgroup of type F , then ΓH =
Γ ∩H(R)+ is an arithmetic lattice of H = HQ(R)+ and

X+
H = Γ\ΓH(R)+ ' ΓH\H(R)+

is a closed subset of X+ endowed with a canonical H-invariant probability
measure µH . Such a subset is said to be special in this section. A probability
measure on X+ is said to be ”algebraic” (or homogeneous) if it is obtained
in this way.

Let P(X)+ be the set of probability measures on X+ endowed with the
weak star topology. Let Q(X+) be the subset of P(X+) consisting of the
algebraic measures. There is a natural definition of strict sequence of Q-
subgroups of GQ: such a sequence Hn,Q is said to be strict if for all proper
Q-subgroup HQ the set

{n ∈ N, Hn,Q ⊂ HQ}

is finite.
We’ll give some general examples of such strict sequence Hn,Q verifying

the following equidistribution property:
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(E) The associated sequence of probability measures µn = µHn weakly
converges to µG.

The following example shows that the property (E) is not always verified:

Example 4.7 Let GQ be the group SU(2). Therefore G = G(R)+ is com-
pact and any (arithmetic) lattice Γ is finite. Therefore we may assume that
Γ = {1} and X+ = G. Fix a Q-torus T0,Q of GQ, and a sequence gn ∈ G(Q)
converging to g ∈ G(R). Note that the canonical measure µT0 is just the
normalized Haar measure on T0(R)+ in this situation. Suppose that the
sequence Tn,Q = gnT0,Qg

−1
n is strict (as an exercise prove that this is pos-

sible). Then µTn is weakly convergent to the normalized Haar measure on
gT 0(R)+g−1 6= µG.

We proposed in [11] (with Laurent Clozel) the following conjecture for
which we don’t know any counter-example. The formulation uses the adeles.
One of the assignments of the organizers was to ”avoid the adeles like the
plague”. So if you are afraid of contamination you should avoid this part.

Let A be the ring of adeles of Q and Af the ring of finite adeles. Let
GQ be an algebraic group of type F . A congruence subgroup of G(Q) is an
arithmetic lattice Γ of G(R)+ of the form

Γ = G(Q)+ ∩K

for an open compact subgroup K of G(Af ). Let Γ be a congruence subgroup
of G(Q) and X = Γ\G(R)+. Then X is a component of

S(G,K) = G(Q)+\G(R)+ ×G(Af )/K

and the components of S(G,K) are indexed by the finite setG(Q)+\G(Af )/K
( which should be thought of as a class-group).

If HQ is a Q-subgroup of type F , then KH = H(Af ) ∩ H is an open
compact subgroup of H(Af ). Every irreducible component of

S(H,K) = S(H,KH) = H(Q)+\H(R)+ ×H(Af )/KH

is endowed with a canonical probability measure. Let ΘX,H be the set of
components of S(H,KH) which are contained in X and let ha = |ΘX,H |. The
adelic probability measure µa,H associated to H is by definition:

µa,H =
1

ha

∑
γ∈ΘX,H

µγ
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where µγ is the canonical probability measure on the component Zγ of
S(H,KH) indexed by γ ∈ ΘX,H . The adelic equidistribution conjecture is
then:

Conjecture 4.8 Let Hn be a strict sequence of Q-subgroups of GQ of type
F . Then the associated sequence of measures µa,Hn weakly converges to µG.

In the example 4.7 it can be shown that the cardinality of the class group
Tn(Q)+\Tn(Af )/K ∩ Tn(Af ) tends to ∞ as n tends to ∞.

4.2.1 Ergodic theory and property E

In this section we explain a general situation where the property E is verified.
We start by the following definition:

Definition 4.9 A connected linear algebraic group over Q is said to be of
type H if its solvable radical is unipotent and if Hs = H/Ru(H) is an almost
direct product of Q-simple groups Hi such that Hi(R) is not compact.

Theorem 4.10 Let GQ be a semi-simple group of type H, and Hn ⊂ GQ be
a strict sequence of subgroups of type H. Then the property (E) is verified
for the associated sequence of measure µn = µHn.

Let’s give some ideas of the proof of such a result. Let GQ be as in
the statement of the theorem and Γ ∈ G(Q)+ be an arithmetic lattice and
X = Γ\G(R)+.

Definition 4.11 Let F ⊂ G(R)+ be a connected closed Lie subgroup. We
say that F is of type K if

(i) F ∩ Γ is a lattice in F .
Therefore F∩Γ\F is a closed subset of Γ\G(R)+. Let µF be the associated

F -invariant probability measure.
(ii) The subgroup L(F ) generated by the unipotent one parameter sub-

group of F acts ergodicaly on F ∩ Γ\F with respect to µF . By definition
this means that any L(F )-invariant measurable subset of F ∩ Γ\F is of µF -
measure 0 or 1.

The relation between the class K and the class H is given by the following
lemma (see [11] for a proof).
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Lemma 4.12 (a) If HQ is an algebraic Q-sub-group of type H then H(R)+

is a Lie sub-group of type K
(b) If F is a closed Lie subgroup of type K, then there exists an algebraic

Q-subgroup FQ of type H such that F = F (R)+.

The algebraic group FQ associated to F in this last statement is the
”Mumford-Tate group of F”: FQ is the smallest Q-subgroup HQ of GQ such
that F ⊂ H(R)+.

A deep result of Ratner [37], [38] (conjectured by Raghunathan) implies
that if L is a closed Lie subgroup of G(R)+ generated by one parameter
unipotent subgroups then the Mumford-tate group FQ of L is of type H
and the closure Γ\ΓL in the analytic topology of Γ\ΓL is Γ\ΓF (R)+ '
F (R)+ ∩ Γ\F (R)+.

Let P(X) be the set of Borel probability measure on X and Q(X) be the
subset of P(X) defined as

Q(X) = {µF , F ∈ K}.

As a consequence of the previously discussed work of Ratner, Mozes-Shah
[32] proved the following (deep) analogue of 4.1:

Theorem 4.13 (Mozes-Shah)
The set Q(X) is compact in the weak star topology. If µn is a sequence

of Q(X) weakly converging to µ, then µ ∈ Q(X) and for all n big enough
Supp(µn) ⊂ Supp(µ).

The proof of theorem 4.10 is now straightforward. Let Hn,Q be a sequence
of algebraic subgroups of GQ of type H and µn ∈ Q(X) be the associated
sequence. If µα is a subsequence converging to µ, then µ = µH for a closed
connected Lie sub-group of type K. Then H = HQ(R)+ for an algebraic
Q-subgroup of type H. For all α � 0, Supp(µα) ⊂ supp(µ), therefore
Lie(Hα(R)) ⊂ Lie(H(R)). Hence Hα(R)+ ⊂ H(R)+ and by the definition
of the Mumford-Tate group Hα,Q ⊂ HQ. As the sequence Hn,Q is strict
HQ = GQ and µ = µG.

4.2.2 Adelic equidistribution for PGL(2, F ).

In view of the last section the property E may fail for sequences Hn,Q of re-
ductive non semi-simple algebraic subgroups of GQ. The following statement
([11] theorem 7.1) is an important case where the property E may fail, but
the adelic equidistribution conjecture 4.8 holds.
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Theorem 4.14 Let F be a number field and GQ = ResF/QPGL(2, F ). Let
OF be the ring of integers of F and dn be a sequence of square free elements
of OF . Then

T ′n,Q =
{(

a b
dnb a

)
, a2 − dnb

2 6= 0
}

is a torus of ResF/QGL(2, F ). Let Tn,Q be the image of T ′n,Q in GQ. Let Γ be
a congruence subgroup of G(Q)+ and X = Γ\G(R)+. If the norm NF/Q(dn)
of dn tends to ∞, then the associated adelic measure µa,n = µa,Tn weakly
converges to µG.

We only give a description of the proof which is an extension of Duke’s
method for the equidistribution of CM points on SL(2,Z)\H discussed in
section 2.2.3.

Let f be a parabolic form on X, π the associated automorphic represen-
tation. For d ∈ OF with d square free, we denote by Πd the base change of π
to Ed = F [

√
d]. Using a formula of Waldspurger ([46], proposition 7, p. 222)

we obtain a relation between µa,d(f) and L(Πd,
1
2
) and we show that for all

ε > 0
|µa,d(f)| � |NF/Q(d)|−

1
4
+ θ

2
+ε, (21)

where θ denotes the ”Selberg constant” (0 ≤ θ < 1
2
) measuring the lack of

validity of the Selberg conjecture (predicting θ = 0). The Lindelöf hypothesis
combined with the Selberg conjecture would give:

|µa,d(f)| � |NF/Q(d)|−
1
2
+ε.

The same kind of results is obtained for Eisenstein series Eχ(g, s) associ-
ated with a character χ of F ∗\A∗

f using a result of Wielonski [47]: µa,d(Eχ(g, 1
2
+

iσ)) is related to the special value of a L-function ”à la Tate” L(χNEd/F ,
1
2
).

There exists A > 0 such that for all ε > 0 and all σ ∈ R:

|µa,d(Eχ(g,
1

2
+ iσ))| � |NF/Q(d)|−

1
4
+ε|σ|A. (22)

The Lindelöf hypothesis for L(χ ◦NE/F ,
1
2
) would give

|µa,d(Eχ(g,
1

2
+ iσ))| � |NF/Q(d)|−

1
2
+ε|σ|A.

Note that we don’t need a subconvexity result in the proof of the theorem.
The method of the proof leads to a conditional statement for the analogue
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statement on the symmetric space. In this case we lose a power of NF/Q(d)
the bounds for |µa,d(f)| and |µa,d(Eχ(g, 1

2
+ iσ))| and we need a subconvexity

bound as in Duke’s theorem.
For example if F is totally real, and Tn is a sequence of tori such that

T (R) is compact this is the problem of equidistribution of toric orbits of
CM points on a Hilbert modular variety discussed briefly in section 3.3.1.
Venkatesh [45] has a method which leads to unconditional results in this
case.

Note that from the harmonical analysis point of view the situation is
much harder than in the case of Duke (say F = Q). Using equations (21)
and (22) you get a L2-convergence and you want to deduce from this a
pointwise convergence (see section 2.3 for a detailed similar example). In
Duke’s case the continuous part of L2(SL(2,Z)\H, dµ0) is obtained using
one Eisenstein series. For a general number field you need to consider an
infinite set of Eisenstein series (essentially parametrised by the units of OF ).
You therefore need to understand the dependence in χ of the bounds given
in the equation (22).

4.3 Equidistribution of special subvarieties of Shimura
varieties

The references for this part are [10] and [43].
Let S be a connected Shimura variety as defined in section 3.3. Let Zn be

a sequence of special subvarieties of S. You can’t expect in general that the
associated sequence of probability measure µn = µZn weakly converges. For
example if xn is a sequence of CM points then µn is just the Dirac measure
supported at xn, such a sequence can converge to δx for a non CM point or
xn may tend to ∞. Even for positive dimentional special subvarieties the
same problem may occur. Start with a special subvariety Z × Z ′ of S for
two special varieties Z and Z ′. If xn is a CM point of Z ′ and Zn = Z ×{xn}
there is no hope of proving the week convergence of µn. A special subvariety
Z of S is said to be NF (non factor) if Z is not of the form Z1 × {x} with
Z1 special and x a CM point. The following theorem is obtained in [43] and
is a generalization of the main result of [10] obtained with L. Clozel.

Theorem 4.15 Let P(S) be the set of Borel probability measure on S. Let
Q(S) = {µZ | Z NF }. Then Q(S) is compact and if µn is a sequence of
Q(S) converging to µ, then µ = µZ ∈ Q(S) and for all n� 0, Zn ⊂ Z.
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As usual, we get the following result in the direction of the André-Oort
conjecture.

Theorem 4.16 Let Y ⊂ S be a subvariety of a Shimura variety S. Then
there exists a finite set {Z1, . . . , Zr} of NF special subvarieties of Y such that
if Z is a special NF subvariety of Y then

Z ⊂ ∪r
i=1Zi.

Let’s recall how theorem 4.15 implies 4.16. Let Zn be a sequence of
distinct NF special subvarieties of Y which are maximal among NF special
subvarieties of Y . By theorem 4.15 we can suppose that the associated se-
quence of probability measure µn converges weakly to µZ for a NF special
subvariety of S. But as Y is closed supp(µZ) = Z ⊂ Y . For n big enough
we know that Zn ⊂ Z ⊂ Y .

Let’s give a sketch of the proof of the theorem 4.15 (the reader should
compare with the proof of the proposition 4.1). There exits a semi-simple
group GQ such that the associated symmetric space D = G(R)+/K∞ is
hermitian and an arithmetic lattice Γ ∈ G(Q)+ such that S = Γ\D.

Let Ω = Γ\G(R)+. We defined in section 4.1.1, a class H of algebraic
Q-subgroups of GQ and a compact subset Q(Ω) of the set P(Ω) of Borel
probability measure on Ω. A special subvariety Z of S is associated to a
Q-subgroup HQ such that Hder

Q is of type H.
Let Zn be a sequence of special subvarieties and Hn,Q be the associated

sequence. Suppose for simplicity that HnQ is semi-simple (this is the case
considered in [10]), then HnQ is of type H Using the results of Mozes and
Shah (theorem 4.13), we may assume that the associated sequence µn ofQ(Ω)
weakly converges to a measure µH ∈ Q(Ω) for an algebraic Q-subgroup HQ
of GQ of type H. For all n� 0 we know moreover that Hn,Q ⊂ HQ. We then
show that HQ is related to Shimura varieties: HQ should be reductive (and in
fact semi-simple in view of the definition 4.9 of type H) and the symmetric
space associated to HR should be of hermitian type. (The formalism of
Deligne [16] and [17] is used in this part).

You need then to pass from this result on Ω = Γ\G(R)+ to a result on
the Shimura variety S = Γ\G(R)+/K∞. The main difficulty is the following:
for each point x ∈ D we have an associated maximal compact subgroup Kx

of G(R)+ and a morphism πx : Ω → S. Let Z be a special subvariety of
S with associated canonical probability measure µZ . Let HQ an associated
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Q-subgroup and µH as previously. To understand the relation between µZ

and µH , you must fix a maximal compact subgroup Kx of G(R)+ such that
H(R)+ ∩Kx is a maximal compact subgroup of H(R)+. Then µZ = πx?µH .
If you could fix a x such that Kx ∩Hn(R)+ is a maximal compact subset of
Hn(R)+ for all n ∈ N then the result on Ω would directly imply the theorem
4.16. To overcome this difficulty (which is not serious if Γ is a cocompact
lattice of G(R)+– i.e. if GQ is Q-anisotropic), we use some results of Dani
and Margulis on the behavior of unipotent flows [14].
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